그래프 머신러닝은 네트워크 데이터를 처리하고 예측, 모델링, 분석 작업에 사용할 수 있는 개체 간의 강력한 관계를 활용할 수 있는 새로운 도구를 제공한다.
그래프 이론과 그래프 머신러닝을 간단하게 소개하고, 그래프의 잠재력을 이해하는 방법을 배운다. 이어서 그래프 표현 학습을 위한 주요 머신러닝 모델, 즉 목적과 작동 방식, 다양한 지도 학습과 비지도 학습 응용 프로그램에서 구현하는 방법을 익힌다. 그런 다음 그래프 데이터의 잠재력을 최대한 활용하고자 데이터 처리부터 모델 학습 그리고 예측을 포함한 완전한 머신러닝 파이프라인을 구축한다. 계속해서 소셜 네트워크 데이터를 수집하고, 텍스트 분석과 금융 거래 시스템, 자연어 처리와 같은 실제 시나리오를 다룬다. 마지막으로 네트워크 정보를 저장하고, 질의하고 처리하기 위한 그래프 분석용 데이터 기반 응용 프로그램을 구축하고 확장하는 방법을 배운 다음, 그래프의 최신 동향을 알아본다.
이 책을 통해 그래프 이론의 필수 개념과 머신러닝 응용 프로그램을 성공적으로 구축하는 데 사용되는 모든 알고리듬과 기술을 배울 수 있을 것이다.